

Live2D Cubism
Native Core API Reference

Version　r5
Last Update　2019/02/26

Copyright © 2018 Live2D Inc. all rights reserved.

Changelog
Update day Version Update Type Content

2018/06/14 r2 translation translation to English from Japanese

2018/07/20 r3 Corrected Corrected errors of snipet
Corrected vague expression
Corrected omissions of letter in snipet
Added more detailed explanation about
rendering method of mask and how to access it
Corrected mistake that const is included in
notation of arguments.

2019/02/26 r5 Added p.11 Added "File version of moc3"

Added p.24 Added "Getting the parent parts of the parts"

Added p.41 Added the API description of
csmGetLatestMocVersion

Added p.42 Added the API description of
csmGetMocVersion

Added p.53 Added the API description of
csmGetPartParentPartIndices

※　Highlighted sentences mean the latest modification and addition.

1

Copyright © 2018 Live2D Inc. all rights reserved.

 Contents

Overall
Regarding this document
Functional classification of Core and Framework

・What is Core?
How to render a model.

・Data for rendering provided by Core
・Cycles of Rendering and behavior of the Core

How to use the API for each scene
How to obtain the information related to the Core.

・How to obtain the version information of the Core.
・Output log of the Core.

Loading files
・How to load a Moc3 file and to expand up to the csmModel object
・File version of moc3
・Release csmMoc or csmModel
・Get rendering size of model
・Loading and placement Drawable

Manipulate the model
・Acquiring each element of the parameter
・Gets the parent parts of parts
・Operating parameters
・Operating parts opacity.
・Applying the operation to the model.
・Reset of DynamicFlag

Rendering
・Necessary processes for rendering
・Specification of rendering

Confirmation of Element with ConstantFlags
Formula for color composition
Culling direction and DrawableIndices
Specification of Clipping

・Confirmation of updated information
・Obtaining the updated vertex information
・Sorting drawing order of Drawable
・DrawOrder and RenderOrder
・Apply mask on rendering.

Individual APIs
Naming rule for the APIs.

2

Copyright © 2018 Live2D Inc. all rights reserved.

・SOA structure
・InPlace

csmGetVersion
csmGetLatestMocVersion
csmGetMocVersion
csmGetLogFunction
csmSetLogFunction
csmReviveMocInPlace
csmGetSizeofModel
csmInitializeModelInPlace
csmUpdateModel
csmReadCanvasInfo
csmGetParameterCount
csmGetParameterIds
csmGetParameterMinimumValues
csmGetParameterMaximumValues
csmGetParameterDefaultValues
csmGetParameterValues
csmGetPartCount
csmGetPartIds
csmGetPartOpacities
csmGetPartParentPartIndices
csmGetDrawableCount
csmGetDrawableIds
csmGetDrawableConstantFlags
csmGetDrawableDynamicFlags
csmGetDrawableTextureIndices
csmGetDrawableDrawOrders
csmGetDrawableRenderOrders
csmGetDrawableOpacities
csmGetDrawableMaskCounts
csmGetDrawableMasks
csmGetDrawableVertexCounts
csmGetDrawableVertexPositions
csmGetDrawableVertexUvs
csmGetDrawableIndexCounts
csmGetDrawableIndices
csmResetDrawableDynamicFlags

3

Copyright © 2018 Live2D Inc. all rights reserved.

Overall

Regarding this document
In this document, you can learn functions of Live2D Cubism Core (Core) in Live2D Cubism 3
SDK for Native, how to use it and specification of its API

Target
- Users of Live2D Cubism 3 SDK for Native
- Those who are considering embedding wrapper to call Core from other languages such as
Java and Python
- Those who are considering embedding Cubism 3 into other programs or platform such as
game engines.

Functional classification of Core and Framework
The following chart shows the relationship between the Application and Core and
Framework, and their roles.
Core is called from both Application and Framework.

4

Copyright © 2018 Live2D Inc. all rights reserved.

・What is Core?
Core is a library including API necessary for handling models (.moc3 file) created with
Cubism 3 Editor. Its features are explained in the following.

- The API is coded by C language.
- The Core doesn't keep and discard Memory. It is necessary to keep the specified amount of
Memory on users' side and provide it to the Core for its request.
- The core doesn't equip rendering function. The role of the Core is to calculate vertex
information according to the parameters of a model. Applications or programs obtain
calculated vertex information and information necessary for rendering (UV, opacity etc) from
Core. Also, it doesn't needed to implement the rendering function for the Core since
Framework provides reference implementation.

Due to the features written above, the core has high portability. Also it is not dependent on
platforms.

How to render a model.
Different from SDKs for Live2D Cubism 2.1, rendering function was separated from the Core
of Cubism 3 SDK.
The advantage of this change is that it is possible for developers to embed Cubism into
various environments.
The rendering function is provided in Framework as a reference implementation for popular
use cases. Even in an environment that the function has not been provided, it is possible to
have the function by obtaining 3D primitives information such as vertex information with the
API of the Core and the rendering APIs specified for environment.

・Data for rendering provided by Core
The data that Core provides about models is classified into three major categories:
Parameter, Part, and Drawable.

Among them, Drawable is a collection of data necessary for rendering.
Vertex information provided by Drawable is two-dimensional data which consists of X and Y.
The starting point of coordinates for each element is bottom left. Also, the surface of the
polygon is counter-clockwise.
The data is in accordance with the coordinate system of OpenGL.

5

Copyright © 2018 Live2D Inc. all rights reserved.

・Cycles of Rendering and behavior of the Core
The following chart shows the flow of processing for loading a model file (.moc3).

Yellow node shows Application, purple node means a segment Framework should process.
Nodes with arrow to the Core indicate calls to API of the Core.

6

Copyright © 2018 Live2D Inc. all rights reserved.

The following chart shows the refresh cycle of rendering.

Same as the first chart, yellow node shows Application, purple node means a segment
Framework should process. Nodes with arrow to the Core indicate calls to API of the Core.
The sections surrounded by solid lines are simplified explanation .

7

Copyright © 2018 Live2D Inc. all rights reserved.

How to use the API for each scene

How to obtain the information related to the Core.

・How to obtain the version information of the Core.
Version information of the Core currently used can be obtained

snipet:
 csmVersion version = csmGetVersion();

Version notation consists of three parts: MAJOR, MINOR, and PATCH.
Operation rule for eah part is shown below.

Major version (1 byte)
It is incremented when backward compatibility is lost with model data dew to some reason
such as major version up of Cubism Editor.

Minor version (1 byte)
It is incremented when function was added with backward compatibility kept.

Patch number (2 byte)
It is incremented when the defect is fixed. If the major version or minor version is changed,
the patch number is reset to 0.

 0x 00 00 0000
 Major Minor Patch

The version consists of 4 bytes. By treating it as an unsigned integer, the new Core version
always means a larger number.

Link to the used API
csmGetVersion

8

Copyright © 2018 Live2D Inc. all rights reserved.

・Output log of the Core.
In order to output the log of the Core, the function to output log can be preset.
For example, if an error occurs when using the Core API, a log gets output through the
preset function.

The function to output log that can be preset is the following.

snipet:
 /** Log handler.
 *
 * @param message Null-terminated string message to log.
 */
 typedef void (*csmLogFunction)(const char* message);

Example:

snipet:
 void logPrint(const char* message)
 {
 printf("[LOG] %s", message);
 }

 // Set Cubism log handler.
 csmSetLogFunction(logPrint);

Link to the used API
csmSetLogFunction
csmGetLogFunction

9

Copyright © 2018 Live2D Inc. all rights reserved.

Loading files

・How to load a Moc3 file and to expand up to the
csmModel object
Model information is stored in moc3. It needs to be expanded up to csmModel object to be
handled in Core .
After expanding it to csmModel, API needs to be operated with csmModel as the key.
Memory area to generate object of csmMoc and csmModel needs to have address
aligned by specified size.
Alignment size is written in the include.

Loading moc3

snipet:
/ ** Alignment size definition * /
enum
{

/** Necessary alignment for mocs (in bytes). */
csmAlignofMoc = 64,
/** Necessary alignment for models (in bytes). */
csmAlignofModel = 16

};

void* mocMemory;
unsigned int mocSize;

// Load file to memory address aligned as 64byte.
// The file size of .moc3 is stored in mocSize.
mocMemory = ReadBlobAligned("Koharu/Koharu.moc3", csmAlignofMoc, &mocSize);

csmMoc* moc = csmReviveMocInPlace(mocMemory, mocSize);

Create a model from moc 3:

snipet:
unsigned int modelSize = csmGetSizeofModel(moc);

// The model needs to be aligned as 16 bytes
void** modelMemory = AllocateAligned(modelSize, csmAlignofModel);

// Create an instance of the model
csmModel* model = csmInitializeModelInPlace(moc, modelMemory, modelSize);

10

Copyright © 2018 Live2D Inc. all rights reserved.

・File version of moc3
moc3 file format had a version up. New moc3 file may not be read in the old Core.
Core has the compatibility to the moc3 file of the following corresponding version.
csmGetLatestMocVersion shows the latest file version that Core can process.

 /** moc3 file format version. */
 enum
 {
 /** unknown */
 csmMocVersion_Unknown = 0,
 /** moc3 file version 3.0.00 - 3.2.07 */
 csmMocVersion_30 = 1,
 /** moc3 file version 3.3.00 - */
 csmMocVersion_33 = 2,
 };

 /** moc3 version identifier. */
 typedef unsigned int csmMocVersion;

 /**
 * Gets Moc file supported latest version.
 *
 * @return csmMocVersion (Moc file latest format version).
 */
 csmApi csmMocVersion csmGetLatestMocVersion();

 /**
 * Gets Moc file format version.
 *
 * @param address Address of moc.
 * @param size Size of moc (in bytes).
 *
 * @return csmMocVersion
 */
 csmApi csmMocVersion csmGetMocVersion(const void* address, const unsigned int size);

csmGetMocVersion shows the file version of moc3.
If it is not moc3 file, it returns csmMocVersion_Unknown = 0.
The execution order of csmGetMocVersion is not tied to the timing of the
csmReviveMocInPlace.
To check whether the fire can be loaded by comparing the got file version and Core version.

11

Copyright © 2018 Live2D Inc. all rights reserved.

To expand to the model while examining the file version of moc3.

snipet:

 void* mocMemory;
 unsigned int mocSize;

 // Load file to memory address alined as 64byte.
 // The file size of .moc3 is stored in mocSize.
 mocMemory = ReadBlobAligned("Koharu/Koharu.moc3", csmAlignofMoc, &mocSize);

 const csmMocVersion fileVersion = csmGetMocVersion(mocMemory, mocSize);

 if((csmGetLatestMocVersion() < fileVersion) ||
 (fileVersion == 0))
 {
 Log("can’t load moc3 file");
 return;
 }

 csmMoc* moc = csmReviveMocInPlace(mocMemory, mocSize);

 unsigned int modelSize = csmGetSizeofModel(moc);

 // The model needs to be aligned as 16 bytes
 void** modelMemory = AllocateAligned(modelSize, csmAlignofModel);

 // Create an instance of the model
 csmModel* model = csmInitializeModelInPlace(moc, modelMemory, modelSize);

If you attempt to load the new files with older versions of the Core, the return value of
csmReviveMocInPlace will be NULL.
If the Core version from csmGetVersion() is 03.03.0000(50528256) or later, the message
below will be output to the Core logs.

csmReviveMocInPlace is failed. The Core unsupport later than moc3 ver:2. This moc3 ver is 3.

Please do use the latest Core.

12

Copyright © 2018 Live2D Inc. all rights reserved.

・Release csmMoc or csmModel
csmReviveMocInPlace, csmInitializeModelInPlace needs to be operated only within the input
memory space.
The returned address is always the one in the prepared memory area.
csmMoc and csmModel exist in the memory area used for input in csmReviveMocInPlace,
csmInitializeModelInPlace. Accordingly the input memory area needs to be kept.
Also, csmMoc needs to be kept until all corresponding csmModels gets discarded.
This is because csmModel refers to csmMoc.

Release memory targeting not addresses of csmMoc or csmModel but its of mocMemory or
modelMemory when csmMoc and csmModel. needs to be discarded.

13

Copyright © 2018 Live2D Inc. all rights reserved.

The following chart shows the flow about securing and releasing memory.

Link to the used API
csmReviveMocInPlace
csmGetSizeofModel
csmInitializeModelInPlace

14

Copyright © 2018 Live2D Inc. all rights reserved.

・Get rendering size of model
canvas size displayed as work area in Editor, center position and unit position that can be
specified when model file is exported can be obtained.

15

Copyright © 2018 Live2D Inc. all rights reserved.

Access to canvas information of model.

snipet:
 csmVector2 size;
 csmVector2 origin;
 float pixelsPerUnit;

 csmReadCanvasInfo(Sample.Model, &size, &origin, &pixelsPerUnit);

 printf("size.X=%5.1f",size.X); // size.X = 2400.0 = (3) * (5)
 printf("size.Y=%5.1f",size.Y); // size.Y = 3000.0 = (4) * (5)
 printf("origin.X=%5.1f",origin.X); // origin.X = 1200.0 = (1) * (5)
 printf("origin.Y=%5.1f",origin.Y); // origin.Y = 1500.0 = (2) * (5)
 printf("pixelsPerUnit=%5.1f",pixelsPerUnit); // pixelsPerUnit = 2400.0 =(5)

Link to the used API
csmReadCanvasInfo

・Loading and placement Drawable
Drawable means an unit of drawing in the Core.
Drawable corresponds to an art mesh on the Editor.
Drawable has the necessary information to draw.
There are static information that does not change and dynamic information that changes by
changing the value of the parameter in a data loaded from moc3. Static information can be
cached in the application side.

The group having csmGet [XXXX] Count is structure of array (SOA). The number of arrays
can be obtained by Count.
An array obtained with an API such as csmGetDrawableTextureIndices is the starting
address of the array.
Arrays in each API have the same sequences. When it is necessary to look for a particular
parameter, the parameter needs to be searched in the array obtained by
csmGetDrawableIds.
Parameters, parts, etc are described the same manner.

16

Copyright © 2018 Live2D Inc. all rights reserved.

The following chart shows the structure of the Drawable list.
When csmUpdateModel is executed, The blue API shows a static item. Also the Orange API
shows a dynamic item.

In loading Drawable, preparation for attribute of the render such as registration to the
graphics API or generation structure for drawing order sorting will be getting done.

17

Copyright © 2018 Live2D Inc. all rights reserved.

Conversion from Drawable SOA to AOS structure

snipet:
// Initialization
drawableCount= csmGetDrawableCount(model);
drawables = Allocate(sizeof(Drawable) * drawableCount);

textureIndices = csmGetDrawableTextureIndices(model);
constantFlags = csmGetDrawableConstantFlags(model);

vertexCounts = csmGetDrawableVertexCounts(model);
vertexPositons = csmGetDrawableVertexPositions(model);
vertexUvs = csmGetDrawableVertexUvs(model);

indexCounts = csmGetDrawableIndexCounts(model);
vertexIndices = csmGetDrawableIndices(model);

ids = csmGetDrawableIds(model);
opacities = csmGetDrawableOpacities(model);
drawOrders = csmGetDrawableDrawOrders(model);
renderOrders = csmGetDrawableRenderOrders(model);
dynamicFlas = csmGetDrawableDynamicFlags(model);

maskCounts = csmGetDrawableMaskCounts(model);
masks = csmGetDrawableMasks(model);

// Initialize static drawable fields.
for (d = 0; d < drawableCount; ++d)
{

drawables[d].TextureIndex = textureIndices[d];

if ((constantFlags[d] & csmBlendAdditive) == csmBlendAdditive)
{

drawables[d].BlendMode = csmAdditiveBlending;
}
else if ((constantFlags[d] & csmBlendMultiplicative) == csmBlendMultiplicative)
{

drawables[d].BlendMode = csmMultiplicativeBlending;
}
else
{

drawables[d].BlendMode = csmNormalBlending;
}

drawables[d].IsDoubleSided =

(constantFlags[d] & csmIsDoubleSided) == csmIsDoubleSided;

drawables[d].VertexCount = vertexCounts[d];
drawables[d].VertexPositions = Allocate(sizeof(Vector3) * vertexCounts[d]);
drawables[d].VertexUvs = Allocate(sizeof(Vector2) * vertexCounts[d]);

18

Copyright © 2018 Live2D Inc. all rights reserved.

// Both VertexPositions and VertexUvs show informatin two-dimension.
// vertexCounts shows the number of vertices, different from indices.
for (i = 0; i < vertexCounts[d]; ++i)
{

drawables[d].VertexPositions[i].x = vertexPositons[d][i].X;
drawables[d].VertexPositions[i].y = vertexPositons[d][i].Y;
// Note that there is no Vertex Position but x and y
drawables[d].VertexPositions[i].z = 0;

drawables[d].VertexUvs[i].x = vertexUvs[d][i].X;
drawables[d].VertexUvs[i].y = vertexUvs[d][i].Y;

}

// vertexIndices [d] are all triangular notation indexCounts [d] always gets a multiple number of 3.
drawables[d].IndexCount = indexCounts[d];
drawables[d].Indices = vertexIndices[d]; // Got as a single array

 // Register values such as VertexPositions, VertexUvs, vertexIndices, etc. in the graphics API
drawables[d].Mesh = MakeMesh(drawables[d].VertexCount,

drawables[d].VertexPositions,
drawables[d].VertexUvs,
drawables[d].IndexCount,
drawables[d].Indices);

 // Access to other Drawable elements
drawables[d].ID = ids[d];
drawables[d].DrawOrder = drawOrders[d];

// The following three items are important on rendering.
drawables[d].Opacity = opacities[d];
drawables[d].RenderOrder = renderOrders[d];
drawables[d].DynamicFlag = dynamicFlas[d];

drawables[d].MaskCount = maskCounts[d];
drawables[d].Masks = Allocate(sizeof(int) * maskCounts[d]);
for (m = 0; m < maskCounts[d]; ++m)
{

drawables[d].Masks[m] = masks[d][m];

// Numbers in masks are index of Drawable
drawables[d].MaskLinks = &drawables[(masks[d][m])];

}
}

19

Copyright © 2018 Live2D Inc. all rights reserved.

Vertex X,Y obtained by csmGetDrawableVertexPositions influenced PixelsPerUnit of canvas
setting on export from Cubism Editor for embedding.
The value of X and Y are shown as a unit. The value can be cal calculated by the following
formula.

 (localX / [5]) [1] 3])X = − (* [
 ([2] 4]) localY / [5])Y = * [− (

Vertex information whose aspect ratio has been kept is saved.
Even if the vertex is beyond the boundary It'll be saved as it is.
For more details, please refer to “Area of DrawableVertexPotions”

20

http://docs.live2d.com/cubism-sdk-manual/drawablevertexpotions/

Copyright © 2018 Live2D Inc. all rights reserved.

Link to the used API
csmGetDrawableCount
csmGetDrawableIds
csmGetDrawableConstantFlags
csmGetDrawableDynamicFlags
csmGetDrawableTextureIndices
csmGetDrawableDrawOrders
csmGetDrawableRenderOrders
csmGetDrawableOpacities
csmGetDrawableMaskCounts
csmGetDrawableMasks
csmGetDrawableVertexCounts
csmGetDrawableVertexPositions
csmGetDrawableVertexUvs
csmGetDrawableIndexCounts
csmGetDrawableIndices

21

Copyright © 2018 Live2D Inc. all rights reserved.

Manipulate the model

・Acquiring each element of the parameter
It is necessary to understand each element of the parameter to manipulate the model.
The following 5 things are the elements.
・ID
・Present value
・Maximum value
・Minimum value
・Initial value

22

Copyright © 2018 Live2D Inc. all rights reserved.

Access to the elements of each parameter

snipet:
 parameterCount = csmGetParameterCount(model);
 parameterIds = csmGetParameterIds(model);
 parameterValues = csmGetParameterValues(model);
 parameterMaximumValues = csmGetParameterMaximumValues(model);
 parameterMinimumValues = csmGetParameterMinimumValues(model);
 parameterDefaultValues = csmGetParameterDefaultValues(model);
 targetnum = -1;

 for(i = 0; i < parameterCount ;++i)
 {
 if(strcmp("ParamMouthOpenY",parameterIds[i]) == 0)
 {
 targetnum = i;
 break;
 }
 }
 //In case that the desired ID could n't be found ID
 if(targetnum == -1)
 {
 return;
 }

// The minimum value, maximum value, initial value of "ParamMouthOpenY" parameter of the model is exported.
// min:0.0 max:1.0 default:0.0
 printf("min:%3.1f max:%3.1f default:%3.1f", parameterMinimumValues[targetnum]
 , parameterMaximumValues[targetnum]
 , parameterDefaultValues[targetnum]);

Link to the used API
csmGetParameterCount
csmGetParameterIds
csmGetParameterValues
csmGetParameterMaximumValues
csmGetParameterMinimumValues
csmGetParameterDefaultValues

23

Copyright © 2018 Live2D Inc. all rights reserved.

・Getting the parent parts of parts

Parts are made of tree structure.
This tree structure is created by the operation of the editor.
csmModel even holds the information of the structure that is generated from moc3.
The results of csmGetPartParentPartIndices shows the parent of parts by index in array.
When the parent number indicates the -1, it indicates that the parent is the Root.

snipet:
// Getting the ID list of parts.

const char** partIds =csmGetPartIds(model);

// Getting the parent of the index list of parts.

const int* parentPartIndices =csmGetPartParentPartIndices(model);

// If partParentIndex = -1, parent is empty.

// If partParentIndex> = 0, the value of parentPartIndices is the Index of the parent.

for (int i = 0; i < partCount; ++i)

{

 if(partParentIndex[i] == -1)

 {

 printf("partParentIndex[%d]:%s does not have a parent part.",i,partIds[i]);

 }

 else

 {

 printf("partParentIndex[%d]:Parent part of %s is %s.",i,partIds[i],partIds[parentPartIndices[i]]);

 }

}

Opacity operations to the parent part also applies to the opacity of the child.

Link to the used API
csmGetPartParentPartIndices

24

Copyright © 2018 Live2D Inc. all rights reserved.

・Operating parameters
In the operation to the Cubism model, operation of the parameter is reflected by
acquiring the address of the array of parameters and writing the value.

It is clamped from the minimum value to the maximum value of the parameter when
csmUpdateModel () is called.
If the repeat setting is made for the parameter, it will not be clamped.

snipet:
 //
 parameterIds = csmGetParameterIds(model);
 parameterValues = csmGetParameterValues(model);
 parameterDefaultValues = csmGetParameterDefaultValues(model);

 // Scan array position corresponding to target ID
 targetIndex = -1;

 for(i = 0; i < parameterCount ;++i)
 {
 if(strcmp("ParamMouthOpenY",parameterIds[i]) == 0)
 {
 targetIndex = i;
 break;
 }
 }
 //In case that the desired ID could n't be found ID
 if(targetIndex == -1)
 {
 return;
 }

 //Multiply the difference from reference value by the specified magnification ratio from the parameter.

 parameterValues[targetIndex] =
 (value - parameterDefaultValues[targetIndex]) * multipleValues[targetIndex] +
 parameterDefaultValues[targetIndex];

Link to the used API
csmGetParameterValues
csmGetParameterDefaultValues

25

Copyright © 2018 Live2D Inc. all rights reserved.

・Operating parts opacity.
Operation of parts opacity can be done by the same way as operation of a parameter.
It is reflected by acquiring the address of the array and writing the value to that
memory.
It is clamped in the range of 0.0 to 1.0 by the processing of csmUpdateModel.

snipet:
 // Manipulate opacity
 partOpacities = csmGetPartOpacities(model);

 // Find parameter index.
 targetIndex = -1;

 for(i = 0; i < parameterCount ;++i)
 {
 if(strcmp("ParamMouthOpenY",parameterIds[i]) == 0)
 {
 targetIndex = i;
 break;
 }
 }
 //In case that the desired ID could n't be found ID
 if(targetIndex == -1)
 {
 return;
 }

 partOpacities[targetIndex] = value;
 }

Link to the used API
csmGetPartOpacities

26

Copyright © 2018 Live2D Inc. all rights reserved.

・Applying the operation to the model.
After changing the opacity of a parameter or part, the operation must be reflected in the
vertex and opacity of the actual Drawable.
This operation is done by csmUpdateModel.
csmResetDrawableDynamicFlags () is needed to be called before csmUpdateModel () in
order to see which information necessary for drawing has been changed. For more details,
refer to "Resetting DynamicFlag"

snipet:

 // Update model.
 csmUpdateModel(Model);

The affected parts here are...
・csmGetDrawableDynamicFlags
・csmGetDrawableVertexPositions
・csmGetDrawableDrawOrders
・csmGetDrawableRenderOrders
・csmGetDrawableOpacities

Link to the used API
csmUpdateModel
csmGetDrawableDynamicFlags
csmGetDrawableVertexPositions
csmGetDrawableDrawOrders
csmGetDrawableRenderOrders
csmGetDrawableOpacities

27

Copyright © 2018 Live2D Inc. all rights reserved.

・Reset of DynamicFlag
csmResetDrawableDynamicFlags executes writing the difference of the value between
former one and current one to csmGetDrawableDynamicFlags
If this operation is skipped, only items of csmIsVisible will be updated by
csmGetDrawableDynamicFlags.
csmGetDrawableDynamicFlags needs to be called right before csmUpdateModel which will
be executed to rendering.

snipet:

 // Reset dynamic drawable flags.
 csmResetDrawableDynamicFlags(Sample.Model);

Link to the used API
csmResetDrawableDynamicFlags

Rendering

・Necessary processes for rendering
For rendering, the following steps are necessary after the process for model.
・Updating Drawable vertices
・Updating opacity of Drawable
・Sorting drawing order
・Checking validity of Drawable if it is not valid rendering needs to be stopped.
・Mask processing

Also, rendering in Cubism has elements such as composition of opacity of textures, additive
synthesis, multiplicative synthesis, clipping (mask), and culling.
When implementing rendering of the Cubism model, it is necessary to reproduce them in the
same way as Editor does.

28

Copyright © 2018 Live2D Inc. all rights reserved.

・Specification of rendering

Confirmation of Element with ConstantFlags
The synthesis method for each Drawable, on / off of culling can be obtained with
csmGetDrawableConstantFlags.

For the meaning of the obtained Flag,please refer to the constants in Live2DCubismCore.h

snipet:
 /** Bit masks for non-dynamic drawable flags. */
 enum
 {
 /** Additive blend mode mask. */
 csmBlendAdditive = 1 << 0,

 /** blend mode mask. */
 csmBlendMultiplicative = 1 << 1,

 /** Double-sidedness mask. */
 csmIsDoubleSided = 1 << 2
 };

Either csmBlendAdditive or csmBlendMultiplicative will be applied.

Formula for color composition
When each color elements consists from 0.0 to 1.0 and D=RGBA(Drgb,Da) is set as color
data to render color data S=RGBA(Srgb,Sa) already contained in the rendering target,
render to calcuate Output result O = RGBA (Orgb, Oa) gets

NormalNormal synthesis
rgb Drgb 1 a) rgbO = × (− S + S
a Da 1 a) aO = × (− S + S

Additive synthesis
rgb Drgb SrgbO = +
a DaO =

Multiplicateve synthesis
rgb Drgb 1 a) rgb rgbO = × (− S + S × D
a DaO =

Note that Multiplicative, when rendering target is buffer with alpha rendering will be failed if
Multiplicative,Additive are applied on transparent background.

29

Copyright © 2018 Live2D Inc. all rights reserved.

Culling direction and DrawableIndices
In DrawableIndices obtained from Core, counter-clockwise rotation is recognized as a
surface.
Adjust the culling control in accordance with the rendering API to use.

Specification of Clipping
Clipping needs to be done by multiplying alpha value after all masks were combined for the
rendering source.
In synthesis of multiple masks, opacity of Drawable is fixed as 1. Also, Normal synthesis is
always applied regardless of specification of the method of synthesis. The opacity of textures
needs to be applied.
Culling is applied in the same way as ordinary rendering method.

・Confirmation of updated information
It may be helpful for acceleration of entire process that only items with changes such as
vertex coordinates, opacity, rendering order of Drawable gets updated. Updated items can
be obtained by csmGetDrawableDynamicFlags.

Checking DynamicFlag, updating vertex information and processing sort flag

snipet:
for (d = 0; d < csmGetDrawableCount(model); d++)
{

dynamicFlags = csmGetDrawableDynamicFlags(model);

isVisible = (dynamicFlags[d] & csmIsVisible) == csmIsVisible;

if ((dynamicFlags[d] & csmVertexPositionsDidChange) ==
csmVertexPositionsDidChange)

{
/* update vertexs */

}

// Check whether drawables need to be sorted.
sort = sort ||

 ((dynamicFlags[d] & csmRenderOrderDidChange) == csmRenderOrderDidChange);
}

if (sort)
{

/* render order need sort */
}

30

Copyright © 2018 Live2D Inc. all rights reserved.

Following 6 are information obtained by csmGetDrawableDynamicFlags.

snipet:

 /** Bit masks for dynamic drawable flags. */
 enum
 {
 /** Flag set when visible. */
 csmIsVisible = 1 << 0,
 /** Flag set when visibility did change. */
 csmVisibilityDidChange = 1 << 1,
 /** Flag set when opacity did change. */
 csmOpacityDidChange = 1 << 2,
 /** Flag set when draw order did change. */
 csmDrawOrderDidChange = 1 << 3,
 /** Flag set when render order did change. */
 csmRenderOrderDidChange = 1 << 4,
 /** Flag set when vertex positions did change. */
 csmVertexPositionsDidChange = 1 << 5
 };

Explanation about each flag

csmIsVisible A bit is set when Drawable is displayed.
Whether the parameter is outside the range of the key or
calculation result of the opacity of Drawable is 0 the bit
is put down.

csmVisibilityDidChange A bit is raised when csmIsVisible changes from the
previous state.

csmOpacityDidChange A bit is raised when opacity of Drawable changed.

csmDrawOrderDidChange A bit is raised when draw order of Drawable changed.
Please note that it doesn't happen when the rendering
order changed.

csmRenderOrderDidChange A bit is raised when rendering order changes.
Rendering order needs to be sorted.

csmVertexPositionsDidChange A bit is raised when the VertexPositions changes.

31

Copyright © 2018 Live2D Inc. all rights reserved.

Flow chart of Flag Confirmation Process

Link to the used API
csmGetDrawableDynamicFlags

32

Copyright © 2018 Live2D Inc. all rights reserved.

・Obtaining the updated vertex information
The updated vertex information is received and the information is copied to the renderer.
Updating the vertice information and opacity read at initialization is only necessary.

Updating the vertice information and opacity.

snipet:
 // Initialize locals.
 dynamicFlags = csmGetDrawableDynamicFlags(renderer->model)
 vertexPositions = csmGetDrawableVertexPositions(renderer->Model);
 opacities = csmGetDrawableOpacities(renderer->Model);

 for (d = 0; d < renderer->DrawableCount; ++d)
 {
 // Update 'inexpensive' data without checking flags.
 renderer->drawables[d].Opacity = opacities[d];

 // Do expensive updates only if necessary.
 if ((dynamicFlags[d] & csmVertexPositionsDidChange) ==
csmVertexPositionsDidChange))
 {
 //Updating vertex information to graphics
 for(i = 0; i < renderer->drawables[d].vertexCount; ++i)
 {
 renderer->drawables[d].vertexPositons[i].x = vertexPositions[d][i].x;
 renderer->drawables[d].vertexPositons[i].y = vertexPositions[d][i].y;
 }
 UpdateGraphicsVertexPosition(renderer->drawables[d]);
 }
 }

Link to the used API
csmGetDrawableVertexPositions
csmGetDrawableDynamicFlags
csmGetDrawableOpacities

33

Copyright © 2018 Live2D Inc. all rights reserved.

・Sorting drawing order of Drawable
DrawOrder changes by the change of parameter. As a result, if the RenderOrder changed,
the calling order of the drawing needs to be changed.

・DrawOrder and RenderOrder
The drawing order (DrawOrder) and the rendering order (RenderOrder) seem to be similar
but different.
The drawing order is the value to be referred to for determination of the order of drawing on
the art mesh on the Editor.

The value output by csmGetDrawableDrawOrders is the value in Cubism Editor's inspector.
Calculation of drawing order group is not related.

Rendering order shows the order of actual rendering of Drawable relating with the drawing
order
To get the rendering order csmGetDrawableRenderOrders (). needs to be called.

34

Copyright © 2018 Live2D Inc. all rights reserved.

Process of initialization for sorting.

snipet:
 // Initialize static fields.
 for (d = 0, count = csmGetDrawableCount(model); d < count; ++d)
 {
 sortableDrawable[d].DrawableIndex = d;
 }

Evaluation function for sorting

snipet:
static int CompareSortableDrawables(const void *a, const void *b)
{
 const SortableDrawable* drawableA = (const SortableDrawable*)a;
 const SortableDrawable* drawableB = (const SortableDrawable*)b;

 return (drawableA->RenderOrder > drawableB->RenderOrder) -
(drawableA->RenderOrder < drawableB->RenderOrder);
}

Sort

snipet:
 renderOrders = csmGetDrawableRenderOrders(model);
 count = csmGetDrawableCount(model);

 // Fetch render orders.
 for (d = 0; d < count; ++d)
 {
 sortableDrawable[d].RenderOrder = renderOrders[sortableDrawable[d].DrawableIndex];
 }

 // Sort.
 qsort(sortableDrawable, count, sizeof(SortableDrawable), CompareSortableDrawables);

Access with sorting order on rendering

snipet:
 for (d = 0, count = csmGetDrawableCount(model); d < count; ++d)
 {
 target = &drawable[sortableDrawable[d].DrawableIndex];
 drawing(target);
 }

35

Copyright © 2018 Live2D Inc. all rights reserved.

Link to the used API
csmGetDrawableCount
csmGetDrawableDrawOrders
csmGetDrawableRenderOrders

・Apply mask on rendering.
To find out which Drawable a Drawable is masked csmGetDrawableMaskCounts and
csmGetDrawableMasks is used.
csmGetDrawableMaskCounts[d] can obtain the information that how many Drawable for
masking d-th Drawable is masked with.
the number on array of i-th Drawable can be obtained csmGetDrawableMasks[d][i].

If there are multiple maskable Drawables, only alpha of each Drawable is synthesized.
To synthesize for mask, Normal synthesize needs to be always applied even if Additive or
Multiplicative are set as Blend mode of the Drawable.
Setting of culling needs to be set for synthesizing.
Even if a Drawable is used as a mask, sometime Drawable needs not to be displayed for
needs for expression. Therefore value of the opacity on the Drawable is not used to
synthesizing masks each other.

36

Copyright © 2018 Live2D Inc. all rights reserved.

Processing Mask in Drawing process and access to mask Drawable

snipet:
/* All of called functions in the following snipet are tentative. */
int d;
int drawableCount = csmGetDrawableCount(model);
const int *maskCount = csmGetDrawableMaskCounts(model);
const int **masks = csmGetDrawableMasks(model);
const csmFlags *dynamicFlags = csmGetDrawableDynamicFlags(model);
for (d = 0; d < drawableCount; ++d)
{
 /* When sorted rendering order has been stored by csmGetDrawableRenderOrder in
Sorters[d].RenderOrder.　*/
 target = Sorters[d].RenderOrder;
 if (maskCount[d] > 0)
 {
 /* Rendering when a mask exists. */
 /* Reset mask buffe */
 ResetMaskBuffer();

 /* Change rendering target to mask buffa. */
 RenderTarget(MASK);

 /* Do the common setting for rendering mask. */
 SetRenderingOpacity(1.0f); //Opacity needs to be fixed as 1.
 SetRenderingMode(RENDER_MODE_NORMAL); //the method of synthesis needs to be
fixed as Normal.
 for (i = 0; i < maskCount[target]; ++i)
 {
 int maskDrawableIndex = masks[target][i];
 /* If maskDrawableIndex gets -1, the Drawable is not exported since it is hidden for example.
 * In this case, rendering mask needs to be skipped. */
 if(maskDrawableIndex == -1)
 {
 continue;
 }

 /* If csmVertexPositionsDidChange of DynamicFlag of mask is not put up vertex information is not available.
 * In this case rendering mask needs to be skipped by continue. */
 if ((dynamicFlags[maskDrawableIndex] & csmVertexPositionsDidChange) !=
 csmVertexPositionsDidChange)
 {
 continue;
 }

 Drawable maskingDrawable = drawable[maskDrawableIndex];
 /* Setting for mask needs to be used for setting of Culling and texture. */
 SetCulling(maskingDrawable.culling);
 SetMainTexture(maskingDrawable.texture);

 /* Rendering */

37

Copyright © 2018 Live2D Inc. all rights reserved.

 DrawElements();
 }
 /* Get rendering target to the normal buffer. */
 RenderTarget(MAIN);

 /* Specify each item of rendering of Drawable */
 Drawable targetDrawable = drawable[target];
 SetRenderingOpacity(targetDrawable.opacity);
 SetRenderingMode(targetDrawable.renderMode);
 SetCulling(targetDrawable.culling);
 SetMainTexture(targetDrawable.texture);

 /* Specify items which will use (if shader is different it needs to be specified on this step) */
 SetMaskTexture(MASK);

 /* Rendering */
 DrawElements();
 }
 else
 {
 /*Rendering without mask*/
 /* Specify each item for rendering of Drawable. */
 Drawable targetDrawable = drawable[target];
 SetRenderingOpacity(targetDrawable.opacity);
 SetRenderingMode(targetDrawable.renderMode);
 SetCulling(targetDrawable.culling);
 SetMainTexture(targetDrawable.texture);

 /* Specify "not" use of mask. */
 SetMaskTexture(NULL);

 /* rendering */
 DrawElements();
 }
}

Link to the used API
csmGetDrawableMaskCounts
csmGetDrawableMasks

38

Copyright © 2018 Live2D Inc. all rights reserved.

Individual APIs

Naming rule for the APIs.

・SOA structure
If there is API called csmGet[XXXX]Count,
arrays obtained by API group of csmGet[XXXX][YYYY]s are stored in the same order.

For more details, please refer to "Loading and placement Drawable".

・InPlace
CsmReviveMocInPlace with InPlace and csmInitializeModelInPlace indicates that they are
APIs manipulate specified memory space.

For more details , please refer to "Release csmMoc or csmModel".

39

Copyright © 2018 Live2D Inc. all rights reserved.

 csmGetVersion
Return version information of The Core.

Argument
None

Return value
・csmVersion(unsigned int)

Notation of the versions consists of three parts: MAJOR, MINOR, and PATCH.
The followings are the rules for management of each part.

MAJOR version (1byte)
This is incremented when backward compatibility with model data (.moc3 file) has been lost
by, for instance, by major version up of Cubism Editor.

MINOR version (1byte)
This is incremented when new functions are added with backward compatibility kept.

PATCH number (2byte)
This is incremented when defect failure has been fixed.
If the MAJOR version or MINOR version is changed, the PATCH number is reset to 0.

 0x 00 00 0000
 Major Minor Patch

Version consists of 4 bytes. Also, the newer version of the Core always indicates the bigger
number by treating it as unsigned integer.

Item with description
How to obtain version information of the Core.

40

Copyright © 2018 Live2D Inc. all rights reserved.

 csmGetLatestMocVersion
Added since CoreVersion3.3.01
Returns the new file version that Core can process.

Argument
None

Return value
・csmMocVersion(unsigned int)

Item with description
File version of moc3

41

Copyright © 2018 Live2D Inc. all rights reserved.

 csmGetMocVersion
Added since CoreVersion3.3.01
Returns the moc3 file version from the loaded memory of .moc3 file.

Argument
・void* address
The address of the head of the data array which includes .moc3.

・const unsigned int size
.moc3 is the length of the data array which includes .moc3.

Return value
・csmMocVersion(unsigned int)

 /** moc3 file format version. */
 enum
 {
 /** unknown */
 csmMocVersion_Unknown = 0,
 /** moc3 file version 3.0.00 - 3.2.07 */
 csmMocVersion_30 = 1,
 /** moc3 file version 3.3.00 - */
 csmMocVersion_33 = 2,
 };

 /** moc3 version identifier. */
 typedef unsigned int csmMocVersion;

If the load is not a moc3 file returns the csmMocVersion_Unknown.
Please be careful that there is a possibility that the value more than the value defined in the
Live2DCubismCore.h will be got by the version-up of Cubism Editor.
To find the file version or that you can use, please be compared with the results of
csmGetLatestMocVersion.

Item with description
File version of moc3

42

Copyright © 2018 Live2D Inc. all rights reserved.

 csmGetLogFunction
Returns a pointer to the saved log function.

Argument
None

Return value
・csmLogFunction (address)

Types of log functions

snipet:
/** Log handler.
 *
 * @param message Null-terminated string message to log.
 */
 typedef void (*csmLogFunction)(const char* message);

Item with description
Output log of the Core.

43

Copyright © 2018 Live2D Inc. all rights reserved.

 csmSetLogFunction
Specify function to output logs

Argument
・csmLogFunction handler

snipet:
/** Log handler.
 *
 * @param message Null-terminated string message to log.
 */
 typedef void (*csmLogFunction)(const char* message);

Return value
None

Item with description
Output log of the Core.

44

Copyright © 2018 Live2D Inc. all rights reserved.

 csmReviveMocInPlace
Play the csmMoc structure in a memory that .moc3 file is loaded.
The address passed by address must satisfy the default alignment.

Description of the alignment size in the include file

snipet:
 /** Alignment constraints. */
 enum
 {
 /** Necessary alignment for mocs (in bytes). */
 csmAlignofMoc = 64,
 };

The played csmMoc structure needs be released after all csmModels generated from
csmMoc has been released.
For more details, please refer to "How to load a Moc3 file and to expand up to the csmModel
object"

Argument
・void* address
The address of the head of the data array which includes .moc3
Alignment is necessary.

・const unsigned int size
.moc3 is the length of the data array which includes .moc3

Return value
・csmMoc*
Address to csmMoc structure
It gets NULL when there is a problem.

Item with description
How to load a Moc3 file and to expand up to the csmModel object

45

Copyright © 2018 Live2D Inc. all rights reserved.

 csmGetSizeofModel
It returns the size of the Model structure generated from the Moc structure.
This is used for securing memory.

Argument
・const csmMoc* moc
Address to Moc structure

Return value
・unsigned int
Size of Model structure

Item with description
How to load a Moc3 file and to expand up to the csmModel object

46

Copyright © 2018 Live2D Inc. all rights reserved.

 csmInitializeModelInPlace
It initializes the Model structure by the Moc structure.
Prepare the aligned memory.

Description of the alignment size in the include file

snipet:
 /** Alignment constraints. */
 enum
 {
 /** Necessary alignment for models (in bytes). */
 csmAlignofModel = 16
 };

Argument
・const csmMoc* moc
Address to Moc structure

・void* address
Address of allocated memory

・const unsigned int size
Size of allocated memory

Return value
・csmModel*

Item with description
How to load a Moc3 file and to expand up to the csmModel object

47

Copyright © 2018 Live2D Inc. all rights reserved.

csmUpdateModel
It reflects the operation of parameters and parts on vertex information and so on.

Argument
・csmModel* model
Address to model structure

Return value
None

Item with description
Applying the operation to the model

csmReadCanvasInfo
It returns the canvas size, center point and unit size of the model.

Argument
・const csmModel* model
Address to model structure

・csmVector2* outSizeInPixels
Address to csmVector 2 for storing model canvas size

・csmVector2* outOriginInPixels
Address to csmVector 2 to store the center point of the model canvas

・float* outPixelsPerUnit
Unit size of model

Return value
None

Item with description
Get rendering size of model

48

Copyright © 2018 Live2D Inc. all rights reserved.

csmGetParameterCount
It returns the number of parameters owned by the model.

Argument
・const csmModel* model
Address to model structure

Return value
・int
Number of parameters to hold

Item with description
Acquiring each element of the parameter

csmGetParameterIds
It returns the array address which stores the ID of the parameter of the model.

Argument
・const csmModel* model
Address to model structure

Return value
・const char**
Address to the array where string address is stored

Item with description
Acquiring each element of the parameter

49

Copyright © 2018 Live2D Inc. all rights reserved.

csmGetParameterMinimumValues
It returns an address to an array which stores only the minimum value of the parameter.

Argument
・const csmModel* model
Address to model structure

Return value
・const float*
Address to the array containing the minimum value

Item with description
Acquiring each element of the parameter

csmGetParameterMaximumValues
It returns an address to an array which stores only the maximum value of the parameter.

Argument
・const csmModel* model
Address to model structure

Return value
・const float*
Address to the array containing the maximum value

Item with description
Acquiring each element of the parameter

50

Copyright © 2018 Live2D Inc. all rights reserved.

csmGetParameterDefaultValues
Ir returns an address to an array which stores only the default values of parameters.

Argument
・const csmModel* model
Address to model structure

Return value
・const float*
Address to the array containing the default value

Item with description
Acquiring each element of the parameter
Operating parameters

csmGetParameterValues
It returns an address to an array of just the current values of the parameters.
Manipulate the model by writing to this array.

Argument
・csmModel* model
Address to model structure

Return value
・const float*
Address to the array where the current value is stored.

Item with description
Acquiring each element of the parameter
Operating parameters

51

Copyright © 2018 Live2D Inc. all rights reserved.

csmGetPartCount
It returns the number of parts the model.
http://docs.live2d.com/cubism-editor-manual/parts/

Argument
・const csmModel* model
Address to model structure

Return value
・int
Number of parts

Item with description
None

csmGetPartIds
It returns the address to the array which stores the part ID of the model.

Argument
・const csmModel* model
Address to model structure

Return value
・const char**
Address to the array where string address is stored

Item with description
None

52

Copyright © 2018 Live2D Inc. all rights reserved.

csmGetPartOpacities
It returns the address to the array which stores the current value of the opacity of the part of
the model.

Argument
・csmModel* model
Address to model structure

Return value
・float*
Address of part opacity array

Item with description
Operate parts opacity

csmGetPartParentPartIndices
Added since CoreVersion3.3.01
It returns the the parent of the parts by index in array.
If the parent of the part is Root, -1 will be stored

Argument
・csmModel* model
Address to model structure

Return value
・const int*
Address of the array stored the index to the parent of the parts

Item with description
Gets the parent parts of parts

53

Copyright © 2018 Live2D Inc. all rights reserved.

 csmGetDrawableCount
It returns the number of Drawables the model.

Argument
・const csmModel* model
Address to model structure

Return value
・int
Number of Drawables the model has

Item with description
Loading and placement Drawable
Sorting drawing order of Drawable

54

Copyright © 2018 Live2D Inc. all rights reserved.

 csmGetDrawableIds
Returns the address to the array which stores the ID of the model possessed by the model.

Argument
・const csmModel* model
Address to model structure

Return value
・const char**
Address to the array where string address is stored

Item with description
Loading and placement Drawable

55

Copyright © 2018 Live2D Inc. all rights reserved.

 csmGetDrawableConstantFlags
It returns the address to the array which stores the static flags of the Drawable possessed by
the model.
The flags described here contain the following three elements
flags regarding blend of rendering
・Add rendering
・Multiply rendering
flag for culling of Drawable
・Double-sided rendering

Argument
・const csmModel* model
Address to model structure

Return value
・const csmFlags*
Address for array of a flag

snipet:
 /** Bitfield. */
 typedef unsigned char csmFlags;

Item with description
Loading and placement Drawable

56

Copyright © 2018 Live2D Inc. all rights reserved.

 csmGetDrawableDynamicFlags
It returns the address to the array which stores the flags updated when drawable owned by
the model gets rendered.
The flags updated on rendering contain the following six elements.
・Visibility of rendering
・Change of visibility of rendering
・Change of opacity
・Change of rendering order
・Replacement of rendering order
・Vertex information update

Argument
・const csmModel* model
Address to model structure

Return value
・const csmFlags*
Address for the array of flag

snipet:
 /** Bitfield. */
 typedef unsigned char csmFlags;

Item with description
Loading and placement Drawable
Applying the operation to the model
Confirmation of updated information
Obtaining the updated vertex information

57

Copyright © 2018 Live2D Inc. all rights reserved.

csmGetDrawableTextureIndices
It returns the address of the array which stores the texture number referred to by the
drawable owned by the model.
The texture number means the number given to the texture atlas to which the art mesh
belongs.

Argument
・const csmModel* model
Address to model structure

Return value
・const int*
Address of the array containing the texture number

Item with description
Loading and placement Drawable

csmGetDrawableDrawOrders
It returns the address for the array which stores the drawing order of the drawing possessed
by the model.
Based on the current parameter value, this value stores the interpolated calculation result.
The influence of the rendering order group is ignored.

Argument
・const csmModel* model
Address to model structure

Return value
・const int*
Address for the array containing the rendering order

Item with description
Loading and placement Drawable
Applying the operation to the model
Sorting drawing order of Drawable

58

Copyright © 2018 Live2D Inc. all rights reserved.

csmGetDrawableRenderOrders
It returns the address for the array which stores the rendering order of the drawing
possessed by the model.
It rendered in the same order as displayed in Cubism Editor.

Argument
・const csmModel* model
Address to model structure

Return value
・const int*
Address for the array containing the rendering order

Item with description
Loading and placement Drawable
Applying the operation to the model
Sorting drawing order of Drawable

csmGetDrawableOpacities
It returns the address for the array which stores the opacity value of the Drawable
possessed by the model.
The value will be between 0.0 and 1.0.

Argument
・const csmModel* model
Address to model structure

Return value
・const float*
Address for array containing opacity

Item with description
Loading and placement Drawable
Applying the operation to the model
Confirmation of updated information
Obtaining the updated vertex information

59

Copyright © 2018 Live2D Inc. all rights reserved.

csmGetDrawableMaskCounts
It returns an address to an array which stores the number of Drawable owned by the model.

Argument
・const csmModel* model
Address to model structure

Return value
・const int*
Address for the array containing the number of masks

Item with description
Loading and placement Drawable
Apply mask on rendering

csmGetDrawableMasks
It returns the address of the jagged array which stores the Drawable number of the masks of
Drawable owned by the model.
Handle it carefully since 0 in csmGetDrawableMaskCounts contains address information
used in other masks in Drawable.

Argument
・const csmModel* model
Address to model structure

Return value
・const int**
Address for the array of addresses containing mask reference number

Item with description
Loading and placement Drawable
Apply mask on rendering

60

Copyright © 2018 Live2D Inc. all rights reserved.

 csmGetDrawableVertexCounts
It returns the address for the array which stores the number of vertices of the drawable
possessed by the model.

Argument
・const csmModel* model
Address to model structure

Return value
・const int*
Address for an array containing the number of vertices of Drawable

Item with description
Loading and placement Drawable
Apply mask on rendering

61

Copyright © 2018 Live2D Inc. all rights reserved.

 csmGetDrawableVertexPositions
It returns the address to the jagged array which stores the vertex of the drawable possessed
by the model.

Argument
・const csmModel* model
Address to model structure

Return value
・const csmVector2**
Address to jagged array to vertex information

snipet:
 /** 2 component vector. */
 typedef struct
 {
 /** First component. */
 float X;

 /** Second component. */
 float Y;
 }
 csmVector2;

Item with description
Loading and placement Drawable
Applying the operation to the model
Confirmation of updated information
Obtaining the updated vertex information

62

Copyright © 2018 Live2D Inc. all rights reserved.

csmGetDrawableVertexUvs
It returns the address to the jagged array which stores the UV information of Drawable
possessed by the model.
Since it corresponds to each vertex, the number of vertex get obtained with
csmGetDrawableVertexCounts.

Argument
・const csmModel* model
Address to model structure

Return value
・const csmVector2**
Address to jagged array to vertex information

Item with description
Loading and placement Drawable

csmGetDrawableIndexCounts
It returns the address of an array which stores the size of the corresponding number array of
polygons against the vertex of the model possessed by the model.
Since it becomes an array describing which corner of a triangle corresponds each vertex, the
value stored in this array always gets a multiple of 3.

Argument
・const csmModel* model
Address to model structure

Return value
・const int*
address of an array that stores the size of the corresponding number array of polygons.

Item with description
Loading and placement Drawable

63

Copyright © 2018 Live2D Inc. all rights reserved.

csmGetDrawableIndices
It returns the address to the jagged array which corresponds Drawable number of the
vertexes of Drawable owned by the model.
Each drawable has stored number which is independent.

Argument
・const csmModel* model
Address to model structure

Return value
・const unsigned short**
Address to the corresponding number of jagged array.

Item with description
Loading and placement Drawable

csmResetDrawableDynamicFlags
In order to refresh the information obtained by csmGetDrawableDynamicFlags at the next
csmUpdateModel, all flags needs to be taken down.
The timing for the call is right after the drawing process is over.

Argument
・csmModel* model
Address to model structure

Return value
None

Item with description
Reset of DynamicFlag

64

